A Natural History Study of Subjects with X-linked Retinoschisis in Anticipation of a Phase I/II Gene Therapy Trial

Mark E. Pennesi, MD/PhD
Associate Professor
X-linked Retinoschisis Background

- Rare X-Linked recessive
- Incidence: 1:5,000 to 1:30,000
- Prevalence: ~35,000 patients in US and EU
- Mutations in single gene RS1 in all cases

Retinoschisin
- 24 kDa protein secreted by photoreceptor and bipolar cells
- Forms extracellular homo-octameric complexes around photoreceptor inner segments, OPL and INL
- Maintains retinal cellular organization and synaptic structure
Clinical Features of X-Linked Retinoschisis

Clinical Features
- Family History
- Decreased central vision
- Maculoschisis (100%)
- Peripheral schisis (50%)
- Vitreous Hemorrhage
- Retinal Detachments
- Negative waveform ERG

Images: Santos et al. 2005 and CEI
Additional Testing Modalities in XLRS

Kinetic Visual Fields

Static Visual Fields

Multifocal ERG

Microperimetry
This is an exciting time for Patients with X-Linked Retinoschisis

Two Gene Therapy Trials:

NCT02317887 - NIH
Study of RS1 Ocular Gene Transfer for X-linked Retinoschisis

NCT02416622 - AGTC
Safety and Efficacy of rAAV-hRS1 in Patients With X-linked Retinoschisis (XLRS)
Critical Questions

How progressive is this disease?

What might be good endpoints for a trial?

Do carbonic anhydrase inhibitors make a difference?
Natural History Study in XLRS

- **Inclusion:** Males, Confirmed mutation in RS1, Age ≥ 6 yrs.
- **Study Design:** 3 year, Phase 0 longitudinal study
- **Enrollment:** 55 patients
- **Sites:**
 - Casey Eye Institute (OHSU)
 - Kellogg Eye Center (U. Mich.)
 - Retina Foundation of the Southwest
- **Primary Endpoints:**
 - Change in time of: BCVA, Visual Fields, SD-OCT, ERG
- **Secondary Endpoints:**
 - Response to Carbonic Anhydrase Inhibitors
Spectrum of Mutations in Natural History Study

<table>
<thead>
<tr>
<th>Subject#</th>
<th>Mutation</th>
<th>Mutation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFS-304</td>
<td>c.1A>T p.M1L</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>RFS-316</td>
<td>c.1A>T p.M1L</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>KEC-006</td>
<td>c.35T>A; c.52+5G>C p.L12H</td>
<td>Missense/Splice site</td>
</tr>
<tr>
<td>CEI-022</td>
<td>c.96dupC;p.Trp33Leufs*53</td>
<td>Duplication</td>
</tr>
<tr>
<td>CEI-002</td>
<td>c.99G>A p.W33Stop</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-005</td>
<td>c.99G>A p.W33Stop</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-020</td>
<td>c.203C>G p.R68R</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>KEC-004</td>
<td>c.208G>A p.G70S</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-006</td>
<td>c.214G>A p.E72K</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-014</td>
<td>c.223dup</td>
<td>Duplication</td>
</tr>
<tr>
<td>CEI-030</td>
<td>c.266A>G p.Y89C</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>RFS-319</td>
<td>c.278A>G p.Y93C</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>KEC-007</td>
<td>c.286T>C p.W96R</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-014</td>
<td>c.288T>C p.W96R</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-003</td>
<td>c.304C>T p.R102W</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-004</td>
<td>c.304C>T p.R102W</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>RFS-312</td>
<td>c.304C>T p.R102W</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>RFS-318</td>
<td>c.305G>A p.R102Q</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-011</td>
<td>c.325G>C p.109R</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>KEC-003</td>
<td>c.329G>A p.C110Y</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>RFS-313</td>
<td>c.520delC</td>
<td>Deletion</td>
</tr>
<tr>
<td>RFS-306</td>
<td>c.574C>T p.P192S</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>RFS-315</td>
<td>c.574C>T p.P192S</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>RFS-320</td>
<td>c.574C>T p.P192S</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-010</td>
<td>c.579dupC</td>
<td>Duplication</td>
</tr>
<tr>
<td>KEC-001</td>
<td>c.596T>C p.I199T</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-015</td>
<td>c.596T>C p.I199T</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-001</td>
<td>c.598C>T p.R200C</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-007</td>
<td>c.598C>T p.R200C</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-008</td>
<td>c.599G>A p.R200H</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>RFS-301</td>
<td>c.626G>C p.R209P</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>KEC-005</td>
<td>c.637C>T p.R213W</td>
<td>Missense mutation</td>
</tr>
<tr>
<td>CEI-017</td>
<td>Exon 1 deletion</td>
<td>Deletion</td>
</tr>
<tr>
<td>CEI-021</td>
<td>Exon 2 deletion</td>
<td>Deletion</td>
</tr>
</tbody>
</table>

Mutations by Class

- **Deletion**
- **Splicing**
- **Duplication**
- **Nonsense**
- **Missense**
• Weak correlation of decreased visual acuity with age
• Need greater than 2 line change for significance
Larger targets useful for safety, but probably not as useful for efficacy
Cross-sectional Baseline Hill of Vision Volume vs. Age

Octopus 900 Static Perimetry

Hill of Vision (Static Perimetry, V4e Target)

R² = 0.2484

Hill of Vision (Static Perimetry, III4e Target)

R² = 0.1786

VFMA – Hill of Vision Volume
Problem: Total Retinal thickness is a combination of schisis and atrophy
Automatic Segmentation

ILM

Cysts

RPE

After Manual Correction

Developed by Tomy Tan, PhD, David Huang MD/PhD
Cyst Thickness Map

Cyst Volume = 0.864 mm3
Spectrum of Baseline Cyst Volume
How Does Treatment with Carbonic Anhydrase Inhibitors influence XLRS?
CAI subgroup – Cyst Volume Change over time

Right Eye

BCVA=52

Volume 0.170 mm³

BCVA=56

Volume 0.158 mm³

BCVA=55

Volume 0.026 mm³

BCVA=56

Volume 0.008 mm³

Left Eye

BCVA=57

Volume 0.946 mm³

BCVA=59

Volume 0.930 mm³

BCVA=56

Volume 0.090 mm³

BCVA=58

Volume 0.070 mm³
CAI subgroup – Cyst Volume Change over time

Right Eye

BCVA=69

BCVA=73

BCVA=73

BCVA=76

0.884 mm³

0.895 mm³

0.573 mm³

0.841 mm³

Left Eye

BCVA=56

BCVA=50

BCVA=54

BCVA=60

0.749 mm³

0.742 mm³

0.638 mm³

0.908 mm³

Screening

1 month

3 month

6 month
Natural History Study Conclusions

• Cross-sectional and natural history of XLRS demonstrates slow progression

• To demonstrate efficacy of a clinical trial improvement of structure of function will be needed

• Treatment with CAIs in XLRS
 • Minimal effect on cyst volume and visual acuity
 • Occasional patient has a good response
Acknowledgements

Co-Authors

Casey Eye Institute
Paul Yang, MD/PhD
Richard G. Weleber, MD
David J. Wilson, MD

Retina Foundation of the SW
David G. Birch, PhD

Thiran Jayasundera, MD
John Heckenlively, MD

AGTC
Jeffery D. Chulay, MD

Clinical Trial Staff

Catie Beattie, MS
Joycelin Niimi, OD
Chris Whitebirch, BS
Lea Bennett, PhD
Naheed Khan, PhD
Lindsey Godsey, MS

Technicians

Darius Liseckas
Paula Rauch, BS
Melissa Kramer, MS
Gareth Harman, BS

Casey Reading Center

Maria Parker, MD
Laura Erker, PhD
Ambar Faridi, MD
Peter Steinkemp
Ellie Chergarnov
Tomy Tan, PhD
Travis Smith, PhD
Edye Parker, MA

Statistician

Dawn Peters, PhD